[CONTRIBUTION FROM THE PHYSICAL SCIENCES LABORATORY, MELPAR, INC.]

Ultraviolet Spectra of 1,2,3-Trisubstituted Aromatic Compounds

JAMES M. SHACKELFORD

Received June 15, 1961

The ultraviolet spectra of some 1,2,3-trisubstituted aromatic compounds were compared with the spectra of the corresponding reference compounds. The extensive hypsochromic and hyperchromic shifts noted are discussed in terms of steric interaction and hydrogen bonding.

In the course of another research program, it became desirable to determine the ultraviolet spectrum of 2-hydroxy-3-methoxybenzoic acid. Comparison of this spectrum with the spectra of benzoic acid, 2-hydroxybenzoic acid, 3-methoxybenzoic acid and 2-methoxyphenol indicated the following:

1. The absorption maximum of *ortho-* or *meta-*substituted benzoic acid is at a longer wave length than is benzoic acid itself.

2. The absorption maximum of the B-band of 2-hydroxy-3-methoxybenzoic acid is at a shorter wave length than any of the other reference compounds listed above.

3. The extinction coefficient of the B-band of 2-hydroxy-3-methoxy benzoic acid is considerably higher than the extinction coefficient of any of the reference compounds. In view of this observation, it was decided to examine the spectra of other 1,2,3-trisubstituted aromatic compounds to determine if this were a general phenomenon.

In selecting the compounds to be studied, the following criterion was established: the compound must contain two *ortho* functional groups which might react through hydrogen bonding. A series of sixteen such compounds was obtained and the spectra compared to the spectra of the corresponding reference compounds (Table I). It was evident that in each case (with two exceptions) the maximum was shifted to a shorter wave length, and in each case (with two exceptions) the extinction coefficient was increased.

These exceptions were 3-methyl-2-hydroxybenzoic acid and 2,3-dimethoxybenzoic acid. One other compound, 3-chloro-2-hydroxybenzoic acid apparently gave no significant shift, either of wave length or of extinction coefficient. Although a much more limited sample of disubstituted benzaldehydes and phenols was studied, they too, exhibited the same shift.

The nomenclature of the absorption bands is that of previous workers.^{1,2} This assigns the alphabetical order of A, B, and C to the bands proceeding from slightly below 200 m μ to longer wave lengths. The B-band normally lies between 200–320 m μ whereas the C-band is normally found in the 260–370-m μ region.

Forbes and Mueller³ in a recent publication discuss the "buttressing effect" of the interaction occurring due to a *m*-substituent exerting an indirect steric effect on the *o*-substituent; in this way a *m*-substituent may alter the steric interaction of the other two vicinal substituents. A large number of examples were given of *m*-disubstituted benzenes and in most cases, the extinction coefficient was decreased; also when a shift was observed, it was usually to a slightly longer wave length.

Forbes and Mueller³ further postulate that "the introduction of large m-substituents appears to inhibit some of the conjugation, as shown by the decreased absorption intensity or disappearance of the B-band."

If, as Forbes and Mueller³ suggest, large msubstituents have an effect on the o-hydrogen interaction with the other vicinal functional group, then similar, and even larger effects should be noted, as in the example of 2-hydroxy-3-methoxybenzoic acid. However, the effect is exactly reversed. The wave length and absorption coefficient are shifted in the opposite direction as predicted when considering the "buttressing effect." The reference compound, 3-methoxybenzoic acid and indeed, all of the other 3-substituted reference compounds in this study, show the effects predicted by Forbes and Mueller. The major difference in the compounds in this study and those studied by Forbes is in the 2- position. All the compounds studied herein contain hydroxyl, methoxy, or nitro groups whereas all of Forbes's compounds have a hydrogen in that position. It is probable that these functional groups have hydrogen bonding tendencies. The steric effect of a bulky 3-substituent could possibly enhance this hydrogen bonding through a "buttressing effect.'

An alternate and perhaps more plausible suggestion could be that these spectral changes are entirely due to the effect of steric conformation, rather than due to increased hydrogen bonding. These three adjacent functional groups could sterically interact and therefore influence the spectrum.

The effect of *ortho* substituents on the spectra of

C. M. Mosher and A. I. Kohlenberg, J. Chem. Soc., 804 (1951).

⁽²⁾ W. J. Forbes, W. A. Mueller, A. S. Ralph, and J. F. Templeton, Can. J. Chem., 35, 1049 (1957).

⁽³⁾ W. F. Forbes and W. A. Mueller, J. Am. Chem. Soc., 79, 6495 (1959).

benzaldehyde, acetophenone and benzoic acid has been extensively studied.^{4,5} An "ortho" effect has been postulated that effectively explains the observed phenomenon.

Maximum electronic interaction requires that ortho substituents be effectively planar. ortho Substituents which have radii large enough to inhibit this planarity raise the energy of the excited state more than the energy of the ground state—*i.e.*, the transition energy increases and the λ_{max} is shifted to shorter wave lengths.⁶ ortho Hydroxyl groups also produce a steric reduction in the absorption intensity accompanied by a rather large bathochromic shift.⁷ Hydrogen bonding, no doubt, also comes into play and accounts in part, for the large spectral differences in the hydroxy and methoxy substituted ketones.

The shift of λ_{max} of the B-band to a shorter wave length for the spectra of the compounds studied in this laboratory is in accord with expectations. The steric requirements of three functional groups is presumed to cause some steric hinderance to planarity, thus increasing the transition energy and shifting the maximum to shorter wavelengths. The sharp increase in the extinction coefficient is probably due to a combination of two factors.

1. The low wave lengths for λ_{max} are probably situated on the lower portion of the tail of a very strong A-band. This tail would contribute a very significant portion of the total absorption in this region.

2. The summation of two bands with a partial overlap is additive. Thus when these two bands are recorded, and when one of the bands has an extremely high extinction coefficient (10⁵ for A-bands) there is a tendency for the λ_{max} of the B-band to shift in the direction of the much higher A-band.

Because of these two factors, and the unknown position of the A-band maximum, it is very difficult to measure the exact magnitude of the shift. The only readily ascertainable fact is that the shift is in the expected direction.

Two types of spectral effects are recognized in studying steric interactions. In type (1), the extinction coefficient is reduced without significant change of λ_{\max} .⁸ In type (2), both the extinction coefficient is changed and a hypsochromic shift is observed.⁸ Type (1) is encountered where steric inhibition is rather weak and type (2) effects are usually encountered where steric inhibition is comparatively strong. The compounds used in this study appear to undergo a type (2) effect.

Although previous workers are not in complete agreement as to the effect of hydrogen bonding on the B-band⁹⁻¹¹ no such disagreement is evident in discussions concerning the effect of hydrogen bonding on the C-band. The C-band is comparatively insensitive to small steric effects but is useful for detecting hydrogen bonding, as hydrogen bonding gives rise to a more pronounced band at a longer wave length. A comparison of the spectra of 2hydroxy- and 2-methoxy-substituted benzoic acids and acetophenones shows that the hydroxyl substituted compounds absorb at longer wave lengths. This has been rationalized in two ways. It may be due to increased planarity of the molecule¹⁰ or to increased polarization.¹¹

Examination of the spectra of the compounds used in this study shows that in most cases, the λ_{\max} of the C-band has been shifted to longer wave lengths. Several significant discrepancies to the preceding statement may be observed; notably those compounds where the *ortho* substituent is a methoxy group. This would largely eliminate the the effect of hydrogen bonding.

Although the discussion has so far considered only disubstituted benzoic acids, it was found that several disubstituted benzaldehydes and several disubstituted phenols also seem to undergo the same type of shifts (Table I). The λ_{max} is at a much lower wave length than is any of the reference compounds and the extinction coefficient of the B-band is considerably higher. The λ_{max} of the C-band of the 3-methoxysalicylaldehyde is 15 m μ higher than is that of salicylaldehyde itself. However, the λ_{max} of the C-band of 2,3-dimethoxybenzaldehyde is the same as that of 2-methoxybenzaldehyde.

Insufficient examples were available for a more thorough investigation of the generality of this phenomenon.

EXPERIMENTAL

Commercial samples of chemicals were of the highest available purity and were recrystallized from appropriate solvents until the melting points agreed with, or exceeded literature values. The ultraviolet spectra were run in Spectro grade methanol (Matheson, Coleman, and Bell) using a Bausch and Lomb ultraviolet spectrophotometer, Model 505 with 1-cm. matched silica cells. The concentration varied from $6 \times 10^{-5}M$ to $1.5 \times 10^{-4}M$.

Preparation of 3-methoxysalicylic acid. A suspension of freshly prepared silver oxide (0.4 mole) in 500 ml. of water

(12) I. A. Pearl, J. Am. Chem. Soc., 68, 431 (1946).

⁽⁴⁾ See E. A. Braude and co-workers, J. Chem. Soc., 1945-1956, for extensive references.

⁽⁵⁾ See W. F. Forbes and co-workers, Can. J. Chem., 1955, to present.

⁽⁶⁾ E. A. Braude and F. Sondheimer, J. Chem. Soc., 3754 (1955).

⁽⁷⁾ See leading references in (6) above.

⁽⁸⁾ E. A. Braude, F. Sondheimer, and W. F. Forbes, *Nature*, 117 (1954).

⁽⁹⁾ R. A. Morton and A. L. Stubbs, J. Chem. Soc., 1347 (1946).

⁽¹⁰⁾ W. F. Forbes and W. A. Mueller, Can. J. Chem., 34, 1340 (1956).

⁽¹¹⁾ A. Burawoy, M. Cais, J. T. Chamberlain, F. Liversedge, and A. R. Thompson, J. Chem. Soc., 3727 (1955).

.0									SH	ACK	LFORD						v	OL, 2	20
			w	$2,600^{d}$	$6,000^{\circ}$	$2,000^{d}$	2,400'	2,800']	2,800'		6,300' 200	3,500°	2,100	$8,000^{l}$ 4,500		$2,600^{d}$	2,800	2.400
	${ m R}_3$		λ_{max}	274	$272 \\ 346$	275	278	279		274 964		$260 \\ 340$	259 217	284	$245 \\ 285$		274	274	284
	22		$\mathbf{R_{3}}$	OCH ₃	NO_2	CH3	CI	\mathbf{Br}	1	0CH3	-	CH,	0CH3	CH,	C ₆ H ₅		OCH3	0CH3	
			\mathbb{R}_2	НО	HO	НО	НО	НО	ļ	0CH3	I	NO2	NO2	NH2	НО		НО	0CH3	
ls			¥	$6,800^{\circ}$ 2,500	6,200	8,900°	8,300° 960	8,300° 820	2,800' 3,400'	6,800° 500°	1,900	$8,900^{\circ}$ 1,000	6,800° 3 EM	2, 300 8, 900 1, 000	$16,500^{k}$		8,300 ^m 2,800	8,300 m 2,800	nno (2
ompound		_R_	λ_{max}	230 293	260 356	232 270	230 230	225 225	274 274	530 530 503	274	232 279	230 202	232 279	250		$253 \\ 315$	253 315	210
eference C	R.		\mathbb{R}_3	0CH3	NO_2	CH3	ū	\mathbf{Br}	0CH3	0CH3	НО	CH,	0CH3	CH3	C ₆ H,		0CH3	OCH,	
R			$\mathbf{R_{i}}$	CO_2H	$CO_{2}H$	CO_2H	CO_2H	CO_2H	0CH3	CO ₂ H	НО	$CO_{2}H$	CO_2H	CO ₂ H	CO2H		СНО	СНО	
			÷	$^{8,900}_{3,700}$	8,900° 3,700	8,900° 8,900°	8,900° 8,900°	8,900° 8,700°	6,200°	6,200° 3,700	8,900 3,700	2,500	2,500	6,600 4,900	8,900° 3,700		10,000 °° 3,000	11,800 ^m 4.300	nnate
	\mathbb{R}^2	-	λ_{max}	236 306	236 306	236 306	236 306	236 236	230 230	230 230	236 306	~253	~ 253	248 334	236 306		255 325	253 320	2
	Ϋ́-		\mathbb{R}_2	но	HO	НО	HO	ЮН	0CH3	0CH3	НО	NO_2	NO_2	$\rm NH_2$	НО		НО	0CH ₁	
			Rı	$CO_{2}H$	CO_2H	$\rm CO_2H$	CO_2H	$CO_{2}H$	CO_2H	CO ₂ H	CO_2H	CO ₂ H	CO ₂ H	CO₂H	CO2H		СНО	CHO	
		-	¥	$12,300^{a,b}$ 5,200 2,700	2,400 4 000	7,900 7,900	8,700 3,200	3,000 18,000	27,000°	$3,100^{a,h}$	15,800 3,400 3,400	9,300 1,600 1,600	8,900	20,000 6,600	$^{\pm,300}_{6,300}$		19,000 9,700 2,800	2,000 8,100 8,000	2,300
soic Acids			$\lambda_{ m max}$	221 244 219	212 228 334	241 241	230 215	228	202 205	540 540	222 222 303 303	~320 222 278	215 215	221 ~242 ~~	229 318		219 265 240	221 280	320
ituted Benz	R1 R2	R3	$\mathbf{R_3}$	0CH3	NO2	CH3	ũ	Br	0CH _s	0CH.	НО	CH,	0CH3	CH,	C ₆ H ₅	$\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{2}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\underset{R_{3}}{\overset{R_{1}}{\underset{R_{3}}{\atopR_{3}}{\underset{R_{3}}{\atopR_{1}}{R$	0CH _a	0CH3	
Disubst			\mathbb{R}_2	HO	ЮН	НО	ЮН	НО	CO_2H	0CH3	CO ₂ H	NO2	NO2	NH2	НО		НО	0CH3	
			R,	CO_2H	$CO_{2}H$	$CO_{2}H$	$CO_{2}H$	CO ₂ H	0CH3	CO_2H	НО	CO2H	CO ₂ H	CO ₂ H	CO ₂ H		СНО	СНО	
	Disubstituted Benzoic Acids Reference Compounds	$[I] \begin{array}{c} R_1 \\ \hline \\ R_2 \\ \hline \\ R_2 \\ \hline \\ R_2 \\ \hline \\ \\ R_2 \\ \hline \\ \\ R_2 \\ R_3 \\ \hline \\ \\ R_3 \\ R_3 \\ \hline \\ \\ R_4 \\ R_3 \\ \hline \\ \\ R_4 \\ R_4 \\ R_5 \\ \hline \\ \\ R_4 \\ R_5 \\ \hline \\ \\ R_5 \\ R_5 \\ \hline \\ \\ R_5 \\ R_5 \\ \hline \\ \\ R_5 \\ R_5 \\ R_5 \\ \hline \\ \\ R_5 \\ R$	$ \begin{array}{c} \mbox{Reference Compounds} \\ \mbox{R}_1 \\ \mbox{R}_2 \\ \mbox{R}_3 \\ R$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

491**0**

SHACKELFORD

VOL. 26

containing 1 mole of sodium hydroxide was heated to 55°. 3-Methoxy-2-hydroxybenzaldehyde (30 g.) was added in one portion and the suspension was stirred for 5 min. without external heating. The temperature rose to 80°. The suspension was filtered while hot, the filtrate was cooled and acidified with dilute hydrochloric acid. A solid gummy mass precipitated which when recrystallized from benzene and then from water gave yellow crystals (12 g.), m.p. 151-152°; lit. m.p.,¹² 150°.

Preparation of 2,3-dimethoxybenzaldehyde. A mixture of 3-methoxysalicylaldehyde (50 g.), dimethyl sulfate (75 g.), potassium carbonate (200 g.), and ethanol (500 ml.) was placed in a 1-l., round-bottom flask and stirred periodically over a period of 48 hr. The reaction was extremely exothermic during the first hour and required external cooling with an ice bath. After 48 hr., the mixture was filtered and concentrated under reduced pressure to remove the ethanol. The residue was recrystallized from methanol by cooling the solution in Dry Ice. 2.3-Dimethoxybenzaldehyde was obtained in 65% yield, m.p. 50-51°.18

Preparation of 2,3-dimethoxybenzoic acid. A suspension of freshly prepared silver oxide (0.4 mole) in 500 ml. of water containing 1 mole of sodium hydroxide was heated to 55°. 2,3-Dimethoxybenzaldehyde (25 g.) was added in one portion and the suspension was stirred for 5 min. while heating to 75°. The suspension was filtered while hot and the filtrate was cooled to room temperature. An oil separated and the aqueous layer was decanted from the oil. The aqueous solution was acidified with dilute hydrochloric acid and a white precipitate was obtained. Recrystallization from methanol gave a product (9 g.) which melted at 125-126°; lit. m.p., '4 125-126°.

Preparation of 3-chlorosalicylic acid.¹⁵ tert-Butyl hypochlorite was prepared according to the procedure in Organic Syntheses.¹⁶ t-Butyl hypochlorite (25 g.) was added to a suspension of salicyclic acid (25 g.) in 500 ml. of water containing a trace of ferrous sulfate. The suspension was stirred for 10 min. while protected from light. The reaction was very exothermic and was cooled with ice. The reaction was filtered and the white solid was recrystallized from a mixture of methanol and water (50/50), m.p. 183-183.5°.

Preparation of 3-bromosalicylic acid.¹⁷ A solution of mercuric nitrate (32 g. in 300 ml. of water) was heated to boiling. A solution of salicylic acid (14 g. in 300 ml. of hot water) was added to the mercuric nitrate and a copious precipitate formed in a few minutes. The white solid was removed by filtration and dried overnight in a vacuum desiccator. The dry solid was suspended in 200 ml. of glacial acetic acid which was cooled in an ice bath. Bromine (15 g.) was dissolved in 50 ml. of glacial acetic acid and this bromine solution was slowly added, with stirring, to the cold suspension. The suspension dissolved. The solution was added to 500 ml. of water and the solid 3-bromosalicylic acid precipitated. Recrystallization from a methanol-water solution gave white crystals, m.p. 181-181.5°.

Acknowledgment. The helpful comments and encouragement of Dr. M. S. Kamlet of the Naval Ordnance Laboratories is gratefully acknowledged.

FALLS CHURCH, VA.

J. Chem. Soc., 1347 (1946)

- (15) B. F. Clark, Jr., Chem. News, 143, 265 (1931).
- (16) R. T. Arnold, Org. Syntheses, XXXII, 20 (1952).
- (17) C. K. Kanvinde et al., Current Sci., 11, 397 (1942).

(continues	
F	
TABLE	

Substituted Phenols

0

		R ₈ A _{max} é
		\mathbb{R}_2
		ų
		λ_{max}
		$\mathbf{R}_{\mathbf{s}}$
		$\mathbf{R_{l}}$
		ų
		λ_{\max}
		$\mathbf{R_2}$
		$\mathbf{R}_{\mathbf{i}}$
		ų
		λ_{\max}
ўн У—Чн	L.	R3
		$\mathbf{R_{I}}$ $\mathbf{R_{2}}$
		R

⁽¹³⁾ F. Montequi, Anales soc. españ. fie. quin., 27, 692 (1929).

⁽¹⁴⁾ J. D. Edwards and J. L. Cashaw, J. Org. Chem., 20, 847 (1955).